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1 Introduction 
   

Impulsive differential equations, that is, differential equations involving impulse effect, appear as a 

natural description of observed evolution phenomena of several real world problems. There are many 

good monographs on the impulsive differential equations [1, 5-9]. Many processes studied in applied 

sciences are represented by differential equations. However, the situation is quite different in many 

physical phenomena that have a sudden change in their states such as mechanical systems with impact, 

biological systems such as heart beats, blood flows, population dynamics [10,18], theoretical physics, 

radiophysics, pharmacokinetics, mathematical economy, chemical technology, electric technology, 

metallurgy, ecology, industrial robotics, biotechnology processes, chemistry [11], engineering [3], 

control theory [13,17], medicine [2,14] and so on. Adequate mathematical models of such processes are 

systems of differential equations with impulses.  

 

The theory of impulsive differential equations is a new and important branch of differential equations. 

The first paper in this theory is related to A. D. Mishkis and V. D. Mil’man in 1960 and 1963 [19]. The 

last decades have seen major developments in this theory. In spite of its importance, the development of 

the theory has been quite slow due to special features possessed by impulsive differential equations in 

general, such as pulse phenomena, confluence, and loss of autonomy (see for instance, [12]). First and 

second order ordinary differential equations with impulses have been treated in several works (see [1, 8, 

11, 15, 16, 20 and 23]). An impulsive differential equation is described by three components: a 

continuous-time differential equation, which governs the state of the system between impulses; an 

impulse equation, which models an impulsive jump defined by a jump function at the instant an impulse 

occurs; and a jump criterion, which defines a set of jump events in which the impulse equation is active 

(see [4]). Mathematically this equation takes the form                                                            
 

                                           ,,)),(,()( Jtttxtftx
k
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kkk
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In this paper, we consider the parameterized problem of impulsive differential equation which takes the 

form                                                                                                                                                       
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2 Preliminaries  

        In this section, we need some basic definitions and properties of impulsive differential equation 

which are used throughout this paper. Here,],0[ TC denotes the Banach space of all continuous functions 

defined on  ],0[ Twith the norm  
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                                                                               Definition 2.1.  Differential equation of the form 
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where 
+Ω  and 

−Ω  are maximal intervals on which the solution can be continued to the right 

or to the left of the point  
0

tt = , respectively. 
 

Definition 2.2. ([5, 21]) )(tx  is said to be the solution of problem (1.1) - (1.3) and (1.4)-(1.5) 

 if it satisfies the following conditions: 

          (1) )0()(lim
0

+

→
==

+
xxtx

ot

, 

          (2)  for  ),0( +∞  , 
k

t τ≠ , )(tx  is differentiable and ))(,()( txtftx =′ , 

        (3) )(tx is left continuous in ),0( +∞ and if 
k

t τ= ,  then 1,)()( ≠= +− ατατ
kk

xx . 

 

3 Main results 

3.1 Existence of Solution 
 

First, we consider the problem (1.1)-(1.3). 
 

Definition 3.1.  By a solution of problem (1.1)-(1.3), we mean a function ),( RJPCx∈ that satisfies the 

problem (1.1)-(1.3) itself . 

 

Theorem 3.1.   Let RRJf →×:  be continuous function and satisfies the lipschitz condition 

            ,),(),,(,))(,())(,( RJxtxtxxKtxtftxtf ×∈∀−≤−              (3.1) 
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then, the problem (1.1)-(1.3) has a unique solution. This solution can be expressed by the formula 
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Proof. Proof. Proof. Proof.     Integrating equation (1.1) over ),0[
1

τ∈t  with the initial condition (1.3), we obtain 
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integrating equation (1.1) over ),(
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By repeating the same procedure, we can easily deduce that 
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Combining (3.4)-(3.7), we obtain (3.3). 
 

Now, we study the existence of solution of the problem (1.1)-(1.3). Let the operator ),(: RJPCF
α
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By the Banach contraction fixed point theorem, it is clear that if                           ,  then 
α

F  has a 

unique solution ),( RJPCx∈ . 

Next, we consider the problem (1.4)-(1.5).    
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Definition 3.2.  By a solution of problem (1.4)-(1.5), we mean a function ),( RJPCx∈ that 

satisfies the problem (1.4)-(1.5) itself. 
Theorem 3.2.   Let the assumptions of theorem (3.1) are satisfied .If  K T < 1, then the problem 

(1.4)-(1.5) has a unique solution. This solution can be expressed by the formula 
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Combining (3.9)-(3.10), we obtain (3.8). 
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Now, we study the existence of solution of the problem (1.4)-(1.5). Let the operator ),(: RJPCF
α
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By the Banach contraction fixed point theorem, it is clear that if  K T < 1 ,  then 
α

F  has a unique 

solution ),( RJPCx∈ . 

 

3.2 Continuation theorem 

Now, we have the following theorems: 

Theorem 3.3.  If 1→α and ,0→β  then the problems (1.1)-(1.3) and the following 

IVP 
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 are coincide with the same solution. 

Theorem 3.4.  If 1→α and ,0→β  then the problems (1.4)-(1.5) and the following 

internal nonlocal Cauchy problem [22] 
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3.3 Extension 

The present results of first’s order impulsive differential equation can be extended for the second 

order impulsive differential equation as follow: 
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we can find the solution )(tp of this problem by the same method of problem (1.1)- 

(1.3), so we have     
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4 Examples 
 

In this section, we consider some second order impulsive differential equations and the following 

examples will be helpful to illustrate the main results of this paper. 

 

Example 4.1. Consider the following problem of impulsive differential equation 
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                            Figure 1: show the continuation of solutions of Ex.(4.1). 

Example 4.2. Consider the following problem of impulsive differential equation 
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                               Figure 2: show the continuation of solutions of Ex.(4.2). 
Example 4.3. Consider the following problem of impulsive differential equation 
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                               Figure 3: show the continuation of solutions of Ex.(4.3). 

5 Conclusion 
 

In this work, we established theorems with some examples for linear first/second order 

impulsive differential equations with linear impulse effect which is a generalization to 
that in previous work [22] and [23]. 
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